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Ladders in a magnetic field: a strong coupling approach
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Abstract. We show that non-frustrated and frustrated ladders in a magnetic field can be systematically
mapped onto an XXZ Heisenberg model in a longitudinal magnetic field in the limit where the rung
coupling is the dominant one. This mapping is valid in the critical region where the magnetization goes
from zero to saturation. It allows one to relate the properties of the critical phase (H1

c , H2
c , the critical

exponents) to the exchange integrals and provide quantitative estimates of the frustration needed to create
a plateau at half the saturation value for different models of frustration.

PACS. 75.10.Jm Quantized spin models – 75.40.Cx Static properties (order parameter, static
susceptibility, heat capacities, critical exponents, etc.) – 75.50.Ee Antiferromagnetics

1 Introduction

Intermediate between 1D and 2D, ladders have been the
subject of an impressive amount of work over the past
few years [1]. Thanks to an intensive experimental [2–5]
and theoretical [6–8] effort, quite a lot is understood con-
cerning the properties of S = 1/2 ladders in a magnetic
field. In particular, the magnetization starts to increase
above a magnetic field H1

c and saturates above a mag-
netic field H2

c , and the phase realized for intermediate
magnetic fields is believed to be a Luttinger liquid with
gapless excitations and a power law decay of the corre-
lation functions. As usual, it is difficult however starting
from a microscopic description in terms of exchange inte-
grals to calculate the parameters of the low energy theory
in the Luttinger liquid phase, and this description is to a
certain extent phenomenological.

In parallel, it has been shown by various authors
that more general ladders can exhibit a new phenomena,
namely plateaus in the magnetization for intermediate
magnetic fields. This has been shown for ladders with more
than two rungs by Cabra et al. [9] on the basis of a strong
coupling expansion in the limit of strong rung couplings.
This has also been shown for frustrated, two-leg ladders
by Totsuka [10] and by Tonegawa et al. [11]. In that case,
the existence of plateaus was predicted using bosoniza-
tion [10], confirmed with exact digonalizations [11], and
a description of the intermediate phase inside the plateau
was given in terms of a Heisenberg XXZ model again start-
ing from the limit of strong rungs [10].

In this paper, we show that all the physics of the gen-
eral problem of frustrated and non–frustated ladders in a
magnetic field can be understood within a unified frame-
work in the limit of strong rung couplings. This is based
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on a mapping of the original model onto the XXZ model in
a longitudinal magnetic field. The picture developped by
Totsuka [10] for the intermediate phase inside the plateau
is a particular case of this mapping, and the approach of
Cabra et al. [9] is the analog of this calculation for non–
frustrated, N -leg ladders. However the unifying power of
this mapping to understand all the aspects of the prob-
lem was not recognized so far. Besides, the limit of strong
rungs is not unphysical. In fact, this is actually the rel-
evant one for Cu2(C5H12N2)2Cl4, the ladder system on
which most results under strong magnetic fields have been
obtained so far [2–5].

The paper is organized as follows. In the next section,
we derive the effective Hamiltonian in the general case.
In Section 3, we discuss the Luttinger liquid phase that
appears for non- and weakly-frustrated ladders. In Sec-
tion 4, we discuss the strongly-frustrated case where a
plateau shows up for intermediate fields. Finally a sum-
mary is given in Section 5.

2 The effective Hamiltonian

The mapping presented in this section can be performed
for any type of coupling between the rungs. To be both
specific and general, we will study the following Hamilto-
nian (see Fig. 1)

H=J⊥

N∑
i=1

Si,1Si,2+J1

N∑
i=1

2∑
α=1

Si,αSi+1,α+J ′2

N∑
i=1

Si,1Si+1,2

+J ′′2

N∑
i=1

Si,2Si+1,1−H
N∑
i=1

2∑
α=1

Szi,α.

(1)
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Fig. 1. Sketch of the ladder considered in this paper.

In this expression, α (resp. i) is a chain (resp. rung) in-
dex, N is the total number of rungs, and periodic bound-
ary conditions along the chain direction are implicit. The
frustration comes from the competition between J1, J ′2
and J ′′2 : the models with J ′2 = J ′′2 = 0 (resp. J1 = 0) are
not frustrated. Besides, in the following approach, J1 and
(J ′2 +J ′′2 )/2 play the same role. So we will limit our discus-
sion to the case J1 ≥ (J ′2+J ′′2 )/2 without loss of generality.
If all the couplings except J⊥ are set to zero, the system
is a collection of independent rungs. The states of a given
rung are denoted by |S〉 = (| ↑↓〉− | ↓↑〉)/

√
2, |T1〉 = | ↑↑〉,

|T0〉 = (| ↑↓〉 + | ↓↑〉)/
√

2 and |T−1〉 = | ↓↓〉. In a config-
uration |σ1σ2〉, σ1 (resp. σ2) refers to chain 1 (resp. 2).
Their energies are E(S) = −3J⊥/4, E(T1) = J⊥/4 −H,
E(T0) = J⊥/4 and E(T−1) = J⊥/4 +H. So upon increas-
ing the magnetic field the groundstate of a given rung
undergoes a transition between the singlet |S〉 and the
triplet |T1〉 at Hc = J⊥, and the total magnetization of
the system jumps discontinuously from zero to saturation.

If the other couplings are non-zero but small, this
abrupt transition is expected to broaden between H1

c and
H2
c , H2

c −H
1
c being of the order of the largest of the cou-

plings J1, J ′2 and J ′′2 . In this limit, the properties of the
system for H1

c ≤ H ≤ H
2
c are best understood by splitting

the Hamiltonian into two parts:

H = H0 +H1,

H0 = J⊥

N∑
i=1

Si,1Si,2 −Hc

N∑
i=1

2∑
α=1

Szi,α,

H1 = J1

N∑
i=1

2∑
α=1

Si,αSi+1,α + J ′2

N∑
i=1

Si,1Si+1,2

+ J ′′2

N∑
i=1

Si,2Si+1,1 − (H −Hc)
N∑
i=1

2∑
α=1

Szi,α. (2)

The groundstate of H0 is 2N times degenerate since each
rung can be in the state |S〉 or |T1〉, and the first excited
state has an energy equal to J⊥. H1 will lift the degen-
eracy in the groundstate manifold, leading to an effec-
tive Hamiltonian that can be derived by standard many-
body perturbation theory [12]. Let us start by introducing
pseudo-spin S = 1/2 operators σi that act on the states

|S〉i and |T1〉i of rung i according to

σzi |S〉i = −
1

2
|S〉i σzi |T1〉i =

1

2
|T1〉i

σ+
i |S〉i = |T1〉i σ+

i |T1〉i = 0

σ−i |S〉i = 0 σ−i |T1〉i = |S〉i. (3)

Then, to first order, and up to a constant, the effective
Hamiltonian reads:

Heff =
N∑
i=1

[Jeff
xy (σxi σ

x
i+1 + σyi σ

y
i+1) + Jeff

z σzi σ
z
i+1]

−Heff
N∑
i=1

σzi . (4)

The parameters of Heff are given by

Jeff
xy = J1 −

J ′2
2
−
J ′′2
2

Jeff
z =

J1

2
+
J ′2
4

+
J ′′2
4

Heff = H −Hc −
J1

2
−
J ′2
4
−
J ′′2
4
· (5)

The Hamiltonian of equation (4) is nothing but the XXZ
model in a longitudinal magnetic field. The calculation
can actually be pushed to higher orders. The simplicity
of the effective model is already lost however at second
order: In addition to second-order corrections to the effec-
tive couplings of the XXZ Hamiltonian, there appears a
3-site term involving next-nearest neighbours. So we will
limit ourselves to the first-order effective Hamiltonian of
equation (4).

This problem has been studied by several authors over
the years, and most of the relevant information concerning
the properties of the model is available in the literature
(see below). To translate these results into the language
of the original Hamiltonian of equation (1), one just has
to express the original operators S+

i,α, S−i,α and Szi,α in
terms of the pseudo-spin operators. This can be done by
inspection, and the results are:

S+
i,1 = −

1
√

2
σ+
i S+

i,2 =
1
√

2
σ+
i

S−i,1 = −
1
√

2
σ−i S−i,2 =

1
√

2
σ−i

Szi,1 =
1

2
(σzi +

1

2
) Szi,2 =

1

2
(σzi +

1

2
). (6)

We now discuss the implications of this mapping in differ-
ent cases. Two situations have to be discussed separately:
Jeff
z < Jeff

xy , which corresponds to weak frustration and

includes the non–frustrated case, and Jeff
z > Jeff

xy , which
corresponds to strongly frustrated ladders.

3 The weakly-frustrated ladder

Let us first discuss the situation where Jeff
z < Jeff

xy . This
corresponds to the case J1 > 3(J ′2 + J ′′2 )/2. Then the ef-
fective Hamiltonian is in the universality class of the XY
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model when the effective field Heff vanishes, and the sys-
tem behaves as a Luttinger liquid for all the values of the
magnetic field between H1

c and H2
c . Having explicit ex-

pressions of the effective coupling constants in terms of
the microscopic parameters, one can calculate everything
in terms of these parameters. For instance, we can ex-
press H1

c and H2
c in terms of J⊥, J1 J

′
2 and J ′′2 . This can

actually be done without calculating the excitation spec-
trum by performing a Jordan-Wigner transformation to
map the problem onto a problem of interacting, spinless
fermions:

HSF = t

N∑
i

(c†i ci+1 + h.c.) + V

N∑
i

nini+1 − µ
N∑
i

ni.

(7)

The parameters of this Hamiltonian are given in terms
of those of equation (4) by t = Jeff

xy /2, V = Jeff
z and

µ = Heff +Jeff
z . H1

c corresponds to the chemical potential
at which the band of spinless fermions starts to fill up.
In that limit the repulsion term is irrelevant because the
density of spinless fermions vanishes, so that the chemical
potential corresponding to H1

c is given by µ = −2t. This
leads to the result H1

c = J⊥ − J1 + (J ′2 + J ′′2 )/2. This
result can also be obtained by a first order calculation of
the gap of the original Hamiltonian,H1

c being equal to this
gap [3]. To estimate H2

c , one cannot neglect the repulsion
term because the band is completely filled. The simplest
way to take it into account is to perform a particle-hole

transformation on the Hamiltonian of equation (7): c†i →

di. Up to a constant, the new Hamiltonian reads

Hhole = −t
N∑
i

(d†idi+1 + h.c.) +V
N∑
i

ndin
d
i+1 − µh

N∑
i

ndi

(8)

where the hole chemical potential µh is given by µh =
−µ+ 2V . In terms of holes, H2

c corresponds to the chemi-
cal potential where the band starts to fill up, and one can
again neglect the repulsion term. Note however that this is
not equivalent to neglecting the repulsion in equation (7)
since V appears in the expression of µh. The chemical po-
tential corresponding to H2

c is thus given by µh = −2t,
leading to H2

c = J⊥ + 2J1. This value agrees with the
value one would deduce from the instatiblity of the spin-
wave spectrum in the ferromagnetic phase [3]. Let us note
however that the present calculation is more rigorous: the
instability of the spin-wave spectrum gives a lower bound
of H2

c since it only detects an instability towards states
with a total spin reduced by one with respect to the satu-
ration value and does not exclude a transition to a lower
spin state at a higher value of the magnetic field. Such a
possibility is indeed excluded by the present calculation.
These expressions of H1

c and H2
c compare well with the

experimental values for Cu2(C5H12N2)2Cl4 [3] for reason-
able values of the parameters.

A lot more is known about the physical properties
of the XXZ Hamiltonian in a magnetic field, especially
concerning the spin-spin correlation functions thanks to

the work of many people [13–18]. In particular, the ex-
ponent controlling the decay at large distances have been
obtained analytically in zero magnetic field and numeri-
cally otherwise [14]. Experimentally, these exponents are
in principle accessible via the temperature dependence of
the relaxation rate measured in NMR experiments. Equa-
tion (6) shows that the spin-spin correlation functions
of the original model are closely related to those of the
effective model. In particular, the exponents describing
the long-distance decay or the low temperature relaxation
rate will be the same. This problem has been recently ad-
dressed by Chitra and Giamarchi [7] who showed that the
relaxation rate is expected to behave like 1/T1 ∝ T−α

at low temperature in a variety of models. More pre-
cisely, 1/T1 is the sum of contributions coming from
parallel and perpendicular fluctuations respectively with
(1/T1)‖ ∝ T 2K−1 and (1/T1)⊥ ∝ T 1/2K−1 at low tem-
perature, where K is a model-dependent constant. One
of the contributions will dominate at low temperature,
and α = max(1 − 2K, 1− 1/2K). In the present case, K
is never smaller than 1/2 [13,14], and the relaxation is
always dominated by the perpendicular term. Exact re-
sults for the exponent α can be obtained in two limits:
when H → H1

c or H2
c , the system becomes effectively

non interacting in terms of spinless fermions, K → 1
and α → 1/2. The other soluble case corresponds to
Heff = 0 i.e. H = Hc + J1/2 + (J ′2 + J ′′2 )/4. In
that case the Bethe ansatz solution leads to K =
π/(2 cos−1(−Jeff

z /Jeff
xy )), i.e.

α = 1−
1

π
cos−1

(
−

2J1 + J ′2 + J ′′2
4J1 − 2J ′2 − 2J ′′2

)
· (9)

When the magnetic field increases from H1
c to H2

c , the
exponent α is first expected to decrease from 1/2 down to
its minimum when Heff = 0 and then to increase back to
1/2. For the regular ladder (J ′2 = J ′′2 = 0), the minimum
value of α is 1/3. The actual variation of this exponent
between these limits can be deduced from the curves of
reference [14]. More precise estimates might be obtained
with e.g. exact diagonalizations using today’s numerical
facilities. Let us note that, in agreement with Chitra and
Giamarchi’s general analysis, the behaviour of the expo-
nent α away from H1

c is not universal: it decreases in the
present case, whereas it increases in the case of the S = 1
Haldane chain [19].

4 The strongly-frustrated ladder

4.1 The general case

Let us now turn to the situation where Jeff
z > Jeff

xy , i.e.
when J1 < 3(J ′2 + J ′′2 )/2. Then the system is no longer in
the XY universality class when Heff = 0 but in the Ising
universality class, and the spectrum is gapped. In terms
of the mapping of equation (7) onto spinless fermions, the
Ising limit means that V is large enough to make the half-
filled system insulating [20–22]. The chemical potential
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as a function of the band-filling will then have a jump. In
the original spin language, this implies that there will be
a plateau in the magnetization at half the saturated value
as a function of magnetic field extending between two val-
ues denoted by H1

p and H2
p . Note that similar conclusions

have been obtained along different lines by several authors
[9–11] concerning the case J ′′2 = 0 (see Sect. 4.3). In the
plateau region, there is an order parameter correspond-
ing to alternating singlets and triplets on neighbouring
rungs. Since µ = Heff + Jeff

z = H − Hc, the width of
the plateau ∆H = H2

p −H
1
p is given by the jump of the

chemical potential, i.e. by the charge gap in the spinless
fermion language. This problem has been studied analyt-
ically with Bethe ansatz [20,21]. When Jeff

z /Jeff
xy is close

to 1, i.e. when J1 is close to 3(J ′2 +J ′′2 )/2 the Bethe ansatz
results lead to

∆H = 4π(J ′2 + J ′′2 )

× exp

[
−
π2

2
√

2

(
2J1 + J ′2 + J ′′2

4J1 − 2J ′2 − 2J ′′2
− 1

)
−1/2

]
·

(10)

When Jeff
xy goes to zero, i.e. when J1 = (J ′2 + J ′′2 )/2, the

spinless fermion model is in the atomic limit, and the gap
is equal to 2V , leading to ∆H = 2J1. In between, the gap
can be obtained from the results of reference [21].

Outside the plateau, i.e. when the magnetic field is
between H1

c and H1
p or between H2

p and H2
c , the system

behaves as a Luttinger liquid, and the exponents can be
deduced from reference [14] as in the previous case. The
only difference is that the parameter K entering the ex-
pression of the exponent α will now go from 1 at H1

c (resp.
H2
c ) to 1/4 at H1

p (resp. H2
p). As a consequence, there is

now a competition between the parallel and perpendicular
contributions to the relaxation rate. When K decreases
between 1 and 1/2, the relaxtion rate is dominated by
(1/T1)⊥, and α decreases from 1/2 to 0. Then the parallel
contribution takes over, and α increases back to 1/2. So
the main difference with the weakly-frustrated case is that
the minimum value of α between H1

c and H1
p (resp. H2

c

and H2
p) is always 0, i.e. there is always a field for which

the relaxation rate does not diverge at low temperature.

4.2 The J0

2 = J00

2 = J2 case

For this system [23], the Ising limit has a very simple inter-
pretation. In that case, the effective Hamiltonian becomes
purely Ising for J2 = J1. This result, clearly valid up to
first order after equation (5), is actually exact including
all order corrections. The simplest way to understand this
is to realize that a singlet on a given rung is completely
decoupled from the rest because all the exchange inte-
grals starting from this singlet belong to a pair of equal
exchange integrals connecting a spin to both ends of the
singlet. So the perturbation cannot couple to the singlets,
and the XY exchange integral must vanish. Besides, this
argument shows that the state with alternating singlets
and triplets is an eigenstate of the Hamiltonian. It is easy

to prove that it is the groundstate for H between H1
c and

H2
c , which are given by H1

c = J⊥ and H2
c = J⊥ + 2J1 in

the present case. So the plateau will extend over all the
intermediate region between zero and saturated magneti-
zation, and its width is equal to 2J1, in agreement with
the general result.

4.3 The J00

2 = 0 case

This case is very similar to the previous one. The transi-
tion to the Ising phase occurs for J ′2 = 2J1/3. The only
difference is that the results for the pure Ising phase can-
not be extended beyond first order perturbation theory
since in that case a singlet is only decoupled from neigh-
bouring singlets, and not from neighbouring triplets. The
reason for mentioning this particular case of frustration is
that it corresponds in principle to the physical situation
realized in Cu2(C5H12N2)2Cl4. Our estimate of the critical
value of J ′2 to enter the Ising phase can be used as an up-
per bound to this exchange integral in Cu2(C5H12N2)2Cl4
since no plateau at half the saturated value has been re-
ported. With J1 = 2.4 K, this means that J ′2 cannot ex-
ceed 1.6 K. Although there is some discussion in the liter-
ature as to what the actual value of this parameter is, all
the estimates reported so far appear to be smaller than
this upper bound.

5 Conclusion

In conclusion, we have shown that a strong coupling ap-
proach starting from the limit of strong rungs provides
a simple and unifying picture of the very rich physics
that appears when ladders are put in a magnetic field. On
one hand, it gives a simple explanation of how the Lut-
tinger liquid physics emerges in the intermediate phase of
unfrustrated ladders. On the other hand, this approach
naturally leads to the presence of a plateau in the inter-
mediate phase at half the saturation value when the cou-
pling between the rungs is strongly frustrated. In systems
where J⊥ is effectively the largest coupling, this calcula-
tion allows one to relate measurable quantities like H1

c ,
H2
c and the critical exponents of the spin-spin correlation

functions to the exchange integrals. Reported values for
H1
c and H2

c in Cu2(C5H12N2)2Cl4 are well reproduced by
this approach. It will be interesting to analyze the crit-
ical exponents along the same lines when experimental
data are available. It seems that currently available data
on Cu2(C5H12N2)2Cl4 do not give access to these expo-
nents because of a 3D ordering that controls the very low
temperature behaviour of the relaxation rate. Finally, this
approach provides quantitative estimates of the frustra-
tion needed to create a plateau at half the magnetization
value for systems where the rung coupling is the largest
one and should help in the search for systems exhibiting
this remarkable property.
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